EEG信号是复杂且低频信号。因此,它们很容易受到外部因素的影响。脑电图伪像的去除对于神经科学至关重要,因为伪影对脑电图分析的结果有重大影响。在这些文物中,去除眼伪影是最具挑战性的。在这项研究中,通过开发基于双向长期记忆(BILSTM)的深度学习(DL)模型来提出一种新型的眼部伪像去除方法。我们创建了一个基准测试数据集,通过组合Eegdenoisenet和DEAP数据集来训练和测试提出的DL模型。我们还通过以各种SNR级别的EOG污染地面真相清洁的脑电图来增强数据。然后,使用小波同步转换(WSST)获得的高定位时频(TF)系数(WSST)获得的高定位时频(TF)系数,将Bilstm网络馈送到从增强信号中提取的特征。我们还将基于WSST的DL模型结果与传统TF分析(TFA)方法进行比较,即短期傅立叶变换(STFT)和连续小波转换(CWT)以及增强原始信号。最佳的平均MSE值为0.3066是通过首次基于BilstM的WSST-NET模型获得的。我们的结果表明,与传统的TF和原始信号方法相比,WSST-NET模型显着改善了伪影的性能。此外,提出的EOG去除方法表明,它的表现优于文献中许多基于常规和DL的眼神伪像去除方法。
translated by 谷歌翻译
血浆定义为物质的第四个状态,在高电场下可以在大气压下产生非热血浆。现在众所周知,血浆激活液体(PAL)的强和广谱抗菌作用。机器学习(ML)在医疗领域的可靠适用性也鼓励其在等离子体医学领域的应用。因此,在PALS上的ML应用可以提出一种新的观点,以更好地了解各种参数对其抗菌作用的影响。在本文中,通过使用先前获得的数据来定性预测PAL的体外抗菌活性,从而介绍了比较监督的ML模型。进行了文献搜索,并从33个相关文章中收集了数据。在所需的预处理步骤之后,将两种监督的ML方法(即分类和回归)应用于数据以获得微生物灭活(MI)预测。对于分类,MI分为四类,对于回归,MI被用作连续变量。为分类和回归模型进行了两种不同的可靠交叉验证策略,以评估所提出的方法。重复分层的K折交叉验证和K折交叉验证。我们还研究了不同特征对模型的影响。结果表明,高参数优化的随机森林分类器(ORFC)和随机森林回归者(ORFR)分别比其他模型进行了分类和回归的模型更好。最后,获得ORFC的最佳测试精度为82.68%,ORFR的R2为0.75。 ML技术可能有助于更好地理解在所需的抗菌作用中具有主要作用的血浆参数。此外,此类发现可能有助于将来的血浆剂量定义。
translated by 谷歌翻译
多武装匪徒(MAB)在各种设置中进行广泛研究,其中目标是\ Texit {Maximize}随着时间的推移{Maximize}的措施(即,奖励)。由于安全在许多现实世界问题中至关重要,因此MAB算法的安全版本也获得了相当大的兴趣。在这项工作中,我们通过\ Texit {线性随机炸药杆}的镜头来解决不同的关键任务,其中目的是将动作靠近目标级别的结果,同时尊重\ Texit {双面}安全约束,我们调用\ textit {lecoling}。这种任务在许多域中普遍存在。例如,许多医疗保健问题要求在范围内保持生理变量,并且优选地接近目标水平。我们客观的激进变化需要一种新的采购策略,它是MAB算法的核心。我们提出Sale-LTS:通过线性汤普森采样算法进行安全调整,采用新的采集策略来适应我们的任务,并表明它达到了同一时间和维度依赖的索姆林的遗憾,因为以前的经典奖励最大化问题缺乏任何安全约束。我们通过彻底的实验展示并讨论了我们的算法的经验性能。
translated by 谷歌翻译
Compliance in actuation has been exploited to generate highly dynamic maneuvers such as throwing that take advantage of the potential energy stored in joint springs. However, the energy storage and release could not be well-timed yet. On the contrary, for multi-link systems, the natural system dynamics might even work against the actual goal. With the introduction of variable stiffness actuators, this problem has been partially addressed. With a suitable optimal control strategy, the approximate decoupling of the motor from the link can be achieved to maximize the energy transfer into the distal link prior to launch. However, such continuous stiffness variation is complex and typically leads to oscillatory swing-up motions instead of clear launch sequences. To circumvent this issue, we investigate decoupling for speed maximization with a dedicated novel actuator concept denoted Bi-Stiffness Actuation. With this, it is possible to fully decouple the link from the joint mechanism by a switch-and-hold clutch and simultaneously keep the elastic energy stored. We show that with this novel paradigm, it is not only possible to reach the same optimal performance as with power-equivalent variable stiffness actuation, but even directly control the energy transfer timing. This is a major step forward compared to previous optimal control approaches, which rely on optimizing the full time-series control input.
translated by 谷歌翻译
Deformable image registration is a key task in medical image analysis. The Brain Tumor Sequence Registration challenge (BraTS-Reg) aims at establishing correspondences between pre-operative and follow-up scans of the same patient diagnosed with an adult brain diffuse high-grade glioma and intends to address the challenging task of registering longitudinal data with major tissue appearance changes. In this work, we proposed a two-stage cascaded network based on the Inception and TransMorph models. The dataset for each patient was comprised of a native pre-contrast (T1), a contrast-enhanced T1-weighted (T1-CE), a T2-weighted (T2), and a Fluid Attenuated Inversion Recovery (FLAIR). The Inception model was used to fuse the 4 image modalities together and extract the most relevant information. Then, a variant of the TransMorph architecture was adapted to generate the displacement fields. The Loss function was composed of a standard image similarity measure, a diffusion regularizer, and an edge-map similarity measure added to overcome intensity dependence and reinforce correct boundary deformation. We observed that the addition of the Inception module substantially increased the performance of the network. Additionally, performing an initial affine registration before training the model showed improved accuracy in the landmark error measurements between pre and post-operative MRIs. We observed that our best model composed of the Inception and TransMorph architectures while using an initially affine registered dataset had the best performance with a median absolute error of 2.91 (initial error = 7.8). We achieved 6th place at the time of model submission in the final testing phase of the BraTS-Reg challenge.
translated by 谷歌翻译
In this paper, we consider incorporating data associated with the sun's north and south polar field strengths to improve solar flare prediction performance using machine learning models. When used to supplement local data from active regions on the photospheric magnetic field of the sun, the polar field data provides global information to the predictor. While such global features have been previously proposed for predicting the next solar cycle's intensity, in this paper we propose using them to help classify individual solar flares. We conduct experiments using HMI data employing four different machine learning algorithms that can exploit polar field information. Additionally, we propose a novel probabilistic mixture of experts model that can simply and effectively incorporate polar field data and provide on-par prediction performance with state-of-the-art solar flare prediction algorithms such as the Recurrent Neural Network (RNN). Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1%.
translated by 谷歌翻译
We present the development of a semi-supervised regression method using variational autoencoders (VAE), which is customized for use in soft sensing applications. We motivate the use of semi-supervised learning considering the fact that process quality variables are not collected at the same frequency as other process variables leading to many unlabelled records in operational datasets. These unlabelled records are not possible to use for training quality variable predictions based on supervised learning methods. Use of VAEs for unsupervised learning is well established and recently they were used for regression applications based on variational inference procedures. We extend this approach of supervised VAEs for regression (SVAER) to make it learn from unlabelled data leading to semi-supervised VAEs for regression (SSVAER), then we make further modifications to their architecture using additional regularization components to make SSVAER well suited for learning from both labelled and unlabelled process data. The probabilistic regressor resulting from the variational approach makes it possible to estimate the variance of the predictions simultaneously, which provides an uncertainty quantification along with the generated predictions. We provide an extensive comparative study of SSVAER with other publicly available semi-supervised and supervised learning methods on two benchmark problems using fixed-size datasets, where we vary the percentage of labelled data available for training. In these experiments, SSVAER achieves the lowest test errors in 11 of the 20 studied cases, compared to other methods where the second best gets 4 lowest test errors out of the 20.
translated by 谷歌翻译
We consider the problem of decision-making under uncertainty in an environment with safety constraints. Many business and industrial applications rely on real-time optimization with changing inputs to improve key performance indicators. In the case of unknown environmental characteristics, real-time optimization becomes challenging, particularly for the satisfaction of safety constraints. We propose the ARTEO algorithm, where we cast multi-armed bandits as a mathematical programming problem subject to safety constraints and learn the environmental characteristics through changes in optimization inputs and through exploration. We quantify the uncertainty in unknown characteristics by using Gaussian processes and incorporate it into the utility function as a contribution which drives exploration. We adaptively control the size of this contribution using a heuristic in accordance with the requirements of the environment. We guarantee the safety of our algorithm with a high probability through confidence bounds constructed under the regularity assumptions of Gaussian processes. Compared to existing safe-learning approaches, our algorithm does not require an exclusive exploration phase and follows the optimization goals even in the explored points, which makes it suitable for safety-critical systems. We demonstrate the safety and efficiency of our approach with two experiments: an industrial process and an online bid optimization benchmark problem.
translated by 谷歌翻译
In this study, to address the current high earlydetection miss rate of colorectal cancer (CRC) polyps, we explore the potentials of utilizing transfer learning and machine learning (ML) classifiers to precisely and sensitively classify the type of CRC polyps. Instead of using the common colonoscopic images, we applied three different ML algorithms on the 3D textural image outputs of a unique vision-based surface tactile sensor (VS-TS). To collect realistic textural images of CRC polyps for training the utilized ML classifiers and evaluating their performance, we first designed and additively manufactured 48 types of realistic polyp phantoms with different hardness, type, and textures. Next, the performance of the used three ML algorithms in classifying the type of fabricated polyps was quantitatively evaluated using various statistical metrics.
translated by 谷歌翻译
In this paper, to address the sensitivity and durability trade-off of Vision-based Tactile Sensor (VTSs), we introduce a hyper-sensitive and high-fidelity VTS called HySenSe. We demonstrate that by solely changing one step during the fabrication of the gel layer of the GelSight sensor (as the most well-known VTS), we can substantially improve its sensitivity and durability. Our experimental results clearly demonstrate the outperformance of the HySenSe compared with a similar GelSight sensor in detecting textural details of various objects under identical experimental conditions and low interaction forces (<= 1.5 N).
translated by 谷歌翻译